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Abstract. A variety of methods are described for expanding particular generating functions 
in terms of their S-function content. Plethysms are used to establish conjugacy relations 
between S-function series and the task of evaluating certain products of classical S-function 
series introduced by Littlewood is then completed. Slinky diagrams are introduced to 
represent non-standard S-functions and their modification to give standard S-functions. 
The role of slinkies in determining the S-function content of other generating functions is 
then explained and exemplified. 

1. Introduction 

The S-function is a special type of symmetric function that is closely linked to the 
character theory of the unitary and symmetric groups (Littlewood 1950, Wyboume 
1970, Macdonald 1979). Infinite series of S-functions play a key role in the calculation 
of many properties of Lie groups such as in the evaluation of Kronecker products and 
branching rules (King 1975, King et a1 1981, Black et a1 1983, Black and Wybourne 
1983). Similar series also arise in various aspects of non-compact groups (Rowe et a1 
1985, King and Wybourne 1985) and in string spectra (Farmer et a1 1988). 

It is possible both to construct generating functions for particular S-function series 
and, conversely, to determine the S-function content of particular generating functions 
by a variety of methods (Littlewood 1950, Knuth 1970, Stanley 1971, Bender and 
Knuth 1972, McConnell and Newell 1973, Burge 1974, Macdonald 1979, Josefiak and 
Weyman 1985, Yang and Wybourne 1986, Lascoux and Pragacz 1988). 

This literature is dominated by the consideration of certain classical S-function 
series introduced by Littlewood (1950). Some of these are related to one another by 
means of conjugacy relations and the substitutional operation of plethysm. These 
aspects of the subject are discussed in 0 3 with a view to setting the stage for the 
determination in 0 4 of the S-function content of a particular set of products of the 
classical S-function series. Nothing other than a special case of the Littlewood- 
Richardson rule (Littlewood 1950, Macdonald 1979) is required to complete this 
exercise. 

One method (Littlewood 1950, McConnell and Newell 1973) of determining the 
S-function content of certain generating functions first yields an infinite series of 
non-standard S-functions. These must then be converted into standard S-functions 
by the use of well known S-function modification rules (Murnaghan 1938, Littlewood 
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1950). This approach has been exploited already to determine the S-function content 
of a number of new generating functions that produce infinite series of S functions 
(Yang and Wybourne 1986). In this paper we show how slinky diagrams (Chen et al 
1984) may be used in this context to represent both non-standard S-functions and 
their subsequent modification to produce standard S-functions. The dinkies are defined 
in § 2 and exploited in § 5 in the determination of the S-function content of a number 
of new generating functions. 

2. Slinkies and S-function modification rules 

S-functions may be defined in various ways. For our purposes it is convenient to 
define (Macdonald 1979) the S-function, sA(x) ,  labelled by the partition A = 
( A l A 2 . .  . A,), with A I  2 A 2  2. . .2 A, > 0 and A I  EN for i = 1, 2 , .  . . , p ,  as the ratio of 
two N x N determinants: 

{ h } = { h } ( X )  = Sh(X)  =IX;ltN-’I/IXr-’I (2.1) 

where (x )  = (xlx2. . . x N ) ,  with N 2 p ,  is a sequence of indeterminates whose presence 
is not always explicitly indicated and whose number, N, may usually be taken to be 
unbounded. The length, lA ,  of A is the number of its non-vanishing parts, i.e. lA = p  
and A ,  = O  for i > p ,  and the weight, w A ,  of A is the sum of its parts, i.e. wA = 

The link between S-functions and the character theory of groups is such that, if A 
is a partition with lA s N and the eigenvalues of a group element, g, of U, are given 
by xJ =exp(i4/)  for j =  1, 2, .  . . , N then the S-function {h}={AlA2 .  . . h N } = s A ( x ) =  
s”(exp(i4,) e ~ p ( i 4 ~ ) .  . . exp(i4,)) is nothing other than the character of g in the 
irreducible representation of UN conventionally denoted by { A }  (Littlewood 1950). 

To each partition A = ( A  I A 2  . . . A,) of weight uA and length 1” = p there corresponds 
a Young diagram or Ferrers diagram F” consisting of boxes, nodes or circles 
arranged in lA left-adjusted rows of lengths A I  , A 2 , .  . . , A,. For example, if ( A )  = 
(4333) = (433) then 

A I + A z + .  . . + A , .  

0 0 0 0  

0 0 0  

0 0 0  
Such a diagram is said to be regular by virtue of the fact that the row lengths are 
non-increasing from top to bottom. To each partition A there corresponds a conjugate 
partition A ’  defined in such a way that FA’  is obtained from F A  by interchanging rows 
and columns. In our example A = (433) and A ’ =  (431). An alternative specification of 
a partition is provided by the Frobenius notation (Littlewood 1950, Macdonald 1979) 
whereby one writes 

a l a 2 . .  . a, 

A = ( b l b 2 . .  . b,) 

where ai = A,  -I and b, = A :  - i for i = 1, 2 , .  . . , r and r is the number of circles on the 
main diagonal of F A ,  so that a, > a, > . . . > a, 3 0 and b, > b, > . . . > b, 3 0. In our 
example we have A = 
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Young diagrams offer the opportunity of giving an alternative, combinatorial, 
definition (Stanley 1971) of the S-function {A},  namely 

where the summation is to be carried out over all distinct standard Young tableaux 
of shape FA. Such a standard Young tableau, indexed by a, is obtained by replacing 
each circle of FA by an entry taken from the set { 1 , 2 , ,  . . , N }  arranged so as to be 
weakly increasing across rows and strictly increasing down columns. If the entries in 
the tableau are i l ,  iz, . . . , iw, then t ^ , ( x )  = x,,x,, . . . x,_ . 

More general S-functions { A }  may, however, be defined by means of (2.1) with A 
now any sequence ( A I A z . .  . A N ) ,  with A ,  E Z, = { 0 , 1 , 2 , .  . ,} for i = 1,  2 , .  , . , N. Such 
an S-function is said to be standard if and only if A is a partition; otherwise it is said 
to be non-standard. In the non-standard case the corresponding Young diagram FA, 
consisting of wA boxes, nodes or circles arranged in left-adjusted rows of lengths A 
A z ,  . . . , AN, is clearly not regular. For example, the Young diagram corresponding to 
the non-standard S-function { A }  = {60531070} takes the form 

0 0 0 0 0 0  
e 

0 0 0 0 0  

0 0 0  
F A  = ~ 6 0 5 3 1 0 7 0  = 

0 
e 

0 0 0 0 0 0 0  

e 

where it has been convenient to signify empty rows by means of a dot in the first column. 
Each non-standard S-function is either identically zero or may be converted to 

standard form by suitably interchanging the columns of the determinant in the 
numerator of (2.1). This observation leads to the modification rules (Littlewood 1950): 

(2.3a) { A l , .  . . , A , ,  . . , A N }  = - { A l , .  . . , A , + l  - 1 ,  A i +  1 , .  . . , A N }  

{ A } = O  if A , + 1  = A ,  + 1 .  (2.3b) 

The application of (2.3a) is to be repeated until either (2.3b) indicates that the 
S-function is zero or a signed standard S-function is obtained. 

While the above simple rules may be readily applied to a given non-standard 
S-function they do not offer much insight into the handling of infinite series of 
non-standard S-functions. Here our irregular Young diagrams have a role to play in 
conjunction with the notion of a slinky (Chen et a1 1987). 

A slinky of length q is a diagram of q circles joined by q - 1  links (Chen er a1 
1984). A slinky can be folded so as to take the shape of a continuous boundary strip 
of a regular Young diagram, with each of its links either horizontal or vertical and its 
circles forming part of the boundary of such a diagram. The sign of such a slinky is 
defined to be (-l) '- '  where r is the number of rows occupied by the circles of the 
slinky, so that r - 1 is the number of vertical links of the slinky. 
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By way of example a slinky of length 4 may be folded into the following eight 
standard continuous boundary strip shapes: 

0 

0 

0 

0 

I 
I 
I 

7 ; "  0 

0 
I 

I 
7 7 - O  0 

0 0-0 -0-0 

0 - 0 0  
I 
0 

I I - - o - Q  

The signs are given by 1, -1, -1, -1, 1, 1, 1 and -1, respectively. It is to be noted 
that the starting point of each slinky is taken to be the position of the leftmost circle 
in the lowest row, and that from this position each slinky extends to the right or 
upwards in a sequence of right-angled folds. 

The Young diagram corresponding to any S-function {A}  = { A l A 2 .  . . A N } ,  whether 
or not it is standard, can be thought of as consisting of N horizontal slinkies. For 
i = 1, 2 , .  . . , N the ith slinky has length A i  and starts at the point (i, 1) in the first 
column of the ith row, the case A,  = 0 being signified by a dot at (i, 1). For example 

(32213: {4004}: (103): 0 

M e e 

w 
0 

e - 
The modification rules (2.3) for non-standard S-functions can then be implemented 

in terms of folding operations on the slinkies constituting the Young diagrams as 
follows. 

Draw the slinky diagram corresponding to the non-standard S-function 
{ A l A 2 . .  . A N } .  Then, successively for i =  1, 2, 3 , .  . . , N, while holding the starting 
positions of the slinkies fixed, fold (if necessary) the ith slinky of length A i  into the 
shape of the unique standard continuous boundary strip such that the first i rows of 
the resulting diagram constitute a regular Young diagram. If this is not possible by 
virtue of the fact that, after folding, the resulting diagram is not regular then {A}  = 0. 
Otherwise we obtain, after folding the last slinky, the regular Young diagram corre- 
sponding to some standard S-function, say { p } .  The final result is then { A }  = ( -1) ' {p}  
where U is the total number of vertical links in the diagram. 

Clearly no modification is required in the case {3221}, whilst our procedure gives 
for (4004) and (103) the folded slinky diagrams 

{4004}: {103}: 0 

0-i) 

I 
I 
0 

0-0 

0 
I 

0 
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corresponding to the modification rules (4004} = -{4031} = (4211) and (103) = 
- { 121) = 0 which follow from the application of (2.3). The following diagrams illustrate 
the modification of the non-standard S-function {A}  = {60531070) to give (64333210): 

- 
0 0 0  

0 - 0 0  

o w  

0-0 

0 

I 
I I  

I 
I 

I 

As another example, { A }  = (61131090) = 0 as a consequence of the irregularity that 
appears when folding the fourth slinky of length 3 in the following diagrams (subsequent 
foldings are irrelevant): 

0 

0 

o-0-0 
0 

0 

We shall later illustrate the application of slinky techniques to some specific 
generating functions that give rise to infinite series of non-standard S-functions. Before 
doing so it is convenient to discuss some relationships between different series and 
then to evaluate a number of expansions explicitly. 
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3. Substitutions, plethysms and infinite series 

In this paper we restrict attention only to those S-function series which are both integral 
and invertible, in that they take the general form 

(3.1) 

The summation is to be taken over all partitions A including the partition 0 for which 
{0} = 1. The number N of the indeterminates x, , x2, . . . , x N  is a parameter which can 
assume any positive integer value but which can be thought of in the general case as 
being unbounded. Many of the S-function series encountered here are injinite, in the 
sense that an infinite number of the coefficients c, are nor?-vanishing. The S-function 
series S is said to be multiplicity free if, for every non-zero C, , we have C, = f 1. 

Associated with every series S of the form (3.1) there is a conjugate series 
S = Z, c,{A’} where A ’  is the partition conjugate to A, and an inverse series S-’ such that 

S .  s-’ = s-’ . S = (0) = 1. (3.2) 
The conjugate of the inverse series S-’ is defined to be the adjoint series St where 
St = (S-I)’ = ( S ’ ) - ’ .  The four series S, S’, S - ’  and St are said to form a family. For 
example, the four series L, M,  P and Q (Yang and Wybourne 1986) form the L family 
with L’= P, L-’ = M and Lt = Q. If S = S’ the series S is said to be self-conjugate, 
while if S = S t  it is selfadjoint. 

As has been emphasised elsewhere (Yang and Wybourne 1986), almost all the 
classical S-function series (Littlewood 1950, King 1975) can be related by means of 
the substitutional operation of plethysm to the S-function series 

L ( x )  = JJ (1 - x,). 
I 

It follows from (2.2) that, with the identification 

{A )(x) = 1 t ^ , ( x )  = 1 ya = { Y )  
a a 

the corresponding plethysm {A}@ L takes the form 

{ A } @ L ( x ) = L ( y ) = f l  ( l - t ; (x)) .  
a 

(3.3) 

(3.4) 

(3.5) 

In particular we have the following table of generating functions for the various families 
of classical S-function series (Littlewood 1950, King 1975, Yang and Wybourne 1986): 

S-function series S(x )  S S’ s-’ s’ 

L P M 0 
C A D B 

A C B D 
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The algebra of plethysm (Littlewood 1950) and the properties of the L family of 
S-function series are such that 

if wA is even 
if w A  is odd 

( 3 . 6 ~ )  

({A}@ L)-' = {A}@ L-' = (-{A}) @ L 

({A}+ {CL})@ L = ({A}@ L )  * ( { P } @  L ) .  

(3 .66)  

( 3 . 6 ~ )  

All of these formulae may be applied to the other members of the L family. It is only 
necessary to replace L by M ,  P and Q as appropriate. 

A further link between the classical S-function series is provided by the transforma- 
tion x, + qx,, for all j ,  applied to any S-function { A } ( x )  or to any S-function series 
S(x) = E A  c,{A}(x). It follows immediately from (2.2) that 

{ A H q x )  = q"*{A} (x )  S(qx) = E  q w * C A { A } ( X ) .  (3.7) 
A 

It is then a trivial matter to see that, in the notation of Yang and Wybourne (1986), 
Q(x)  = L ( - x ) ,  P ( x )  = M ( - x ) ,  G(x) = E ( - x )  and H ( x )  = F ( - x ) ,  whilst for S = A, B, 
C, 0, V and W we have S(-x) = S(x)  and S(ix) = S'(x) where i2  = - 1 .  

A further more general type of substitution may be made. Let 

k where f ( x )  = ZE'= ,  akx is any polynomial in x of degree m, and the coefficients q k  are 
the reciprocals of the m roots of (1 - f ( x ) ) .  Then we can define 

(3 .8b)  

( 3 . 8 ~ )  

The conjugate S:(x) of S,(x) may be evaluated, for example, by exploiting the Cauchy 
formula (Littlewood 1950, Stanley 1971, Macdonald 1979, Lascoux and Pragacz 1988): 

and (Littlewood 1950) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 
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it follows that 

c ( - l ) ~ * s , , ( q ) { A ' } ~ { C L } ( x )  = E  (-l)"*s,,(q)s,(z) 

( - 1 )w's,,( Q ){ A 'I 0 { CL '1 (x  1 = c ( - 1 Y*s, .( q )  s, 4 z ) 
w 

, 
n ( 1  - qkZb) = n ( 1  -f( fhh'(x))) =  SA'(^) if w A  is even 

b 
(3.14) 

where z b  = t ^ , ' ( x )  indicates a contribution to S,,(z) arising from a standard Young 
tableaux of shape FA' .  

Taking f (x )  = x in the specification (3.9) of S,(X) merely allows us to confirm the 
validity of the conjugacy relations L '= P and C ' =  A by using (3.14) with A = 1 and 
A = 2, respectively. Similarly the result V ' =  W follows from (3.14) in the casef(x) = x2 
and A = 1. More generally, for all f (x) ,  it follows from (3.14) that 

1: 
=[ k b  

Sl(x) = 

n ( 1  
156 b 

qkZb)-' =n (1 - f ( - f h h ' ( X ) ) ) - '  = Si)(-X) if wA iS odd 

s;(x) = s;'(-x) 

s ; l (x)  = S,b) 

S,(x) = n ( 1  + alx l  + a,.: + . . . + a,x;) 

S:(x) = S,(-x) 

S:,(x) = s;'(x). 

and 

Thus, if 

then 

Sl(x) =n ( 1  -a ,x ,+a ,xf - .  . .+(-l)mumx:)-l 

S;'(x)=, ( l+U,X,+a,xf+.  . .+a,x;)-' 

s:(x) = , ( 1  - a,x, + a,xf -. . . + ( - l )"a ,x ; ) .  

I 

I 

I 

( 3 . 1 5 ~ )  

(3 .1  5 b )  

( 3 . 1 6 ~ )  

(3.16b) 

( 3 . 1 6 ~ )  

(3.16d) 

It is the evaluation of the S-function series of type (3.16) which will be undertaken in 
0 5 as an illustration of the use of dinkies, but first we turn to some products of the 
classical S-function series. 

4. Products of S-function series 

We are now in a position to complete the task of evaluating products of two types, 
namely the 16 products 

(4.1) n ( 1  * Xi)*, n ( 1  * Xj)* '  
I i 

and the 32 products 

(1 *xk)*' n ( 1  * xlxj)*'. 
k I <J 

IGJ 

(4.2) 

This task was begun (Littlewood 1950, King 1975) and nearly completed (Yang and 
Wybourne 1986, Lasoux and Pragacz 1988) elsewhere. We both unify and generalise 
the results by exploiting (3.7).  
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The various conjugacy relations given in Q 3 imply that the problem reduces to the 

(4.3a) 

evaluation of the following products: 

Q( PX) Q( 4x1 = n ( 1 + PX, 1 n ( 1 + qx, 1 
I I 

for (4.1), and 

(4.36) 

(4.4a) 

(4.46) 

(4.4c) 

(4.4d) 

in the case of (4.2). 

further factors of the type Q ( r x ) ,  is to make use of (3.11). This immediately gives 
Probably the simplest way to evaluate (4.3a), or any generalisation of it involving 

so that in our special case 

= ( p q ) f ( p E + p S - ’ q +  . . . + q S ) {  S + f ,  t ) ’ ( x ) .  
s , r a o  

(4.6) 

In deriving this result (2.2) has been used, along with the recognition that in the case 
of two indeterminates, p and q, the only relevant standard Young tableaux are typically 
of the form 

1 1 1 1 1 1 1 1 1 1 2 2 2 2  
2 2 2 2 2 2 2  

and thus of shape F(”+‘.‘) for some s and t ,  with s 2 0 and t 2 0. 

Black and Wybourne 1983) 
Setting, in turn, p = q = 1, p = -q = 1 and p = q = -1 in (4.6) gives (Black et a1 1983, 

and 

L ( x ) L ( x ) =  ( - l )”S+l){S+t ,  t ) ’ ( x ) .  
s,1=0 

(4.7a) 

(4.7b) 

(4.7c) 

The conjugates of these expansions yield M ( x ) M ( x ) ,  M ( x ) P ( x ) =  W ( x )  and 
P(X)P(X) .  
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In the case of (4.3b) the usual Littlewood-Richardson rule (Littlewood 1950, 
Macdonald 1979) for multiplying S-functions may be used to show that 

Q ( p x ) M ( q x ) = n  ( ~ + P x , )  n ( 1  -qx,)- '= c p"d"'l"}(x){~}(x) 
I J m,n*O 

(4.8) 

The special cases p = * 1 and q = * 1 then yield, in the notation of Yang and  Wybourne 
(1986), the familiar results Q ( x ) M ( x )  = S(x), Q ( x ) P ( x )  = L ( x ) M ( x )  = 1 and 
L ( x ) P ( x )  = R ( x ) .  This completes the evaluation of the  products (4.1) by means of (4.3). 

All that is required to effect the expansions of (4.4) is to note first that the constituent 
series are given by (Littlewood 1950) 

(4.9 b)  

(4.9c) 

(4.9d) 

(4.9e) 

where 

and p' = S = (2A1, 2Az, .  . .), and then to evaluate the products of all the terms in the 
last four expressions with {l"'}. These products are given by the special case of the 
Littlewood-Richardson rule known as Pieri's rule: {l"'}{A} =E, { p } ,  where for each 
partition A the sum is over all partitions p such that F p  is a regular diagram obtained 
by adding m circles to F A  with at most one added to any given row. It is then 
straightforward but tedious to obtain the following results: 

where 

if a,  > b, ( a , > b ,  i f i = r )  
if a, = b, ( a , = b ,  i f i = r )  
if b,,, < a ,  < b, (OS a, < b, if i = r )  
if a,  = b,,, 
if a, < b,,, 

(4.10b) 

and 

( 4 . 1 1 ~ )  
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and 

(4.12a) 

where 

0 if a ,  > b, + 2 ( a , >  b, + 2  i f i = r )  
if i = r )  

p 2 + 9 '  i f b , + , + Z < a ,  < b, + 2  ( 1  < a r <  b, + 2  if i =  r)  (4.12 b )  
if U ,  = b, + 2 (a,  = b,+ 2 

i f a , = b , + , + 2  (a,  = 0, 1 i f i = r )  
ifs,< b , + , + 2  

j: 
and finally 

where 

if A ,  = O(mod 2) 
if A ,  = l(mod 2) mul(A,) = { $ - , p  

so that 

(4.13a) 

(4.13 b )  

( 4 . 1 3 ~ )  

where the summation is carried out over all partitions A, and no is the number of rows 
of F A  of odd length. 

Various special cases may be recovered from (4.10)-(4.13). For example, in the 
special case p = 1 and q = - i  (4.10b) reduces to 

if a, = bi 
otherwise. 

so that 

Similarly the case p = -1 and q = - i  in (4.12b) gives 

so that 

(4.14) 

(4.15) 
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Other results of Yang and Wybourne (1986) may be recovered by setting p = *1 and 
q = *l.  

Similarly the case p = -1 and q = - i  in (4.12b) gives 

(-l)bl 

0 otherwise 

if ai = bi + 2 
if ai = bi+,+2 (a,=Oor 1 if i =  r )  mult(s:> =[ (-1)bi+1 

leading to the result 

a l a2 . .  . a, 
r s = o  

with 
bi + 2 for 1 s is SS r 

fo r s+  1 S is r - 1 i f s  < r 
for i = r i f s  < r. 

( 4 . 1 6 ~ )  

(4.16 b) 

This is a slightly more explicit form of the result given by Lascoux and Pragacz (1988). 
Finally, their deliberate omission of a representative of a final family of products can 
be rectified by using (4.11) in the case p = q = 1 to give 

where 

( A :  - A : + 1 +  2)/2 
( A  I - A : + l +  1)/2 
( A : - A : + i +  1)/2 
( A :  - A:+i)/2 

for A :  = A:+l  5 O(mod 2) 
for A :  =O(mod 2) and A:+ l  = l(mod 2) 
for A: = l(mod 2) and A:+l = O(mod 2) 
for A :  = A:+l 5 l(mod 2). 

(4.17 b) mult( A :) = 

It should be pointed out that the conjugacy relations (3.15) imply that QA = ( M C ) ’ ,  
QB = ( M D ) ’ ,  QC = ( M A ) ’  and QD = ( M E ) ’ .  To weight 8 we have from (4.16) 

LC = {0} - { 1) + { 1 ’} - { 1 ’} + { 14} - { 1 ’} + { 16} - { 1 ’} + { 1 ’} 

- (2) + (21) - {212} + {213} - {214} + (21’) - {216} + (3) - (32) 

+{321} -{3212}+{3213} -{32}+{321}-{3212} -{41}+{42} 

- {422} + (43) - {42} + { 5 1 ’} - { 52 l} + . . . . (4.18) 

and from the conjugate of (4.17) 

M D  = {o}+{ 1} +2{2}+{21} + 2{22}+{221}+ 2{23}+ (2’1) +2{24} 

+2{3}+ (31) +2{32}+ (321) + 2{322} +{32’1} +3{4}+2{41} 

+4{42}+ 21421) +4{422} +2{43}+ {431}+ 3{42} +3{5} +2{51} 

+4{52} +2{521} + 2{53} +4{6}+3{61} +6{62} +4{7} + 3{71} 

+ 5 { 8 } + .  . . . (4.19) 
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5. Slinky diagrams and the S-function content of series 

Bearing in mind the definition (2.1) of an S-function, the generating function 

S, (x )=E  (l+aix;+alxf+. . .+Ll,x,) (5.1) 
I 

may be expanded in terms of S-functions through a consideration of the product 
S,(x)lx~-Jl. Multiplying the ith row of the Vandermonde determinant by the ith factor 
of S,(x) for i = 1, 2, . . . , n immediately gives 

0 0 . . .  0 
all all al l  
a22 a22 a22 

am am am 

* . .  
. . .  
. . .  (x )  

* . .  

(5.2) 

where the notation is intended to indicate that the summation is over all those 
S-functions { p } ( x )  for which each part p; is taken from the set {0,1,. . . , m} and 
carries with it a multiplicative factor uw,, with a, = 1, for i = 1,2, . . . , N. Thus 

Of course, in this expression p is, in general, not a partition. Indeed the summation 
is over all p such that F" consists of N horizontal dinkies of lengths 0, 1,. . , , or m 
taken in any order with any number of repetitions. To standardise the expansion (5.2) 
it is only necessary to successively fold the dinkies of length p l ,  p 2 ,  . . . , pN as described 
in 0 2 .  This then yields an expansion of the required form: 

In this expression 

k = l  

where the summation is over those p such that the corresponding horizontal slinky 
diagram may be folded to give the slinky diagram of the partition A, and U is the 
number of vertical folds. The exponents (Yk  serve to count the number of dinkies of 
length k. 

It is apparent that, in the general case for which N + CO, the multiplicities c(A) can 
grow without limit. Nevertheless it is possible to construct complete results for low 
values of m. 

Let us consider the specific case of m = 3. We have 

cc 
( 1 + ax, + bxf + cx;') = gpsr (a ,  b, c ) { 3  p 2 4  1 '}. 

I p.4.  r = 0 
(5.6) 
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0-0 

23 0 0  

o--o 

I 
I 

The lengths of the slinkies can only be 0, 1, 2 or 3. The list of all elementary regular 
combinations of folded slinkies is as follows: 

a factors weight ( c2)lr 

3 23 2' 2 21 l 3  1' 1 - 0-0 0 0  0-0 0 - 0 0  0 0 
1 I I I I 
0 0  M 0 0 0 

I o--o 1 
0 (5.7) 

and the corresponding signed weight factors ( - l ) 'aabPcY are 

+C +C' - ac +b -C +C -6 +a 

The significance of the epithet elementary lies in the fact that all regular slinky diagrams 
with no more than three columns may be constructed using these particular regular 
slinky diagrams. In general, any one regular diagram may be constructed in more than 
one way from these building blocks. 

Consider the construction of the diagram corresponding to {3p241r}. There is only 
one slinky diagram which will give rise to the term {3p}, namely the diagram 

composed of p copies of 3. The corresponding signed weighting factor P p ,  of {3p} is 
given by 

Pp = c p .  (5.8) 
For the term {2q} the situation is more complex. Using the elementary diagrams 

of (5.7) we can combine a copies of 23, p copies of 2' and y copies of 2 to make up 
2y as shown schematically below: 

22 
o 7 ] p factors weight ( -ac)@ 
0-0 

2' M y factors weight (6)' 

where q = 3 a  + 2 p  + y. The various contributions to the signed weight factor 
( c2)"( -ac)P(b) '  have been indicated and there is an additional overall multiplicity of 
[ aa+$+;rl = ( a + P + y )  ! / a  ! p ! y ! arising from the fact that the a + p + y factors may be 
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arbitrarily ordered. The total multiplicity, Qq, of the term {2q} is therefore given by 

(5 .9)  

Similarly, the multiplity R, of (1') is given by 

R,= ( - l )"arbucp 
P. U, 7 

(5 .10)  

For the general term {3p241r} we then have 

gpqr(  abc)  = p p  ( QqRr - CQq - 1Rr- 1 )  (5.11) 

of signed weight 
o-o 

in which the second term is due to the presence of the slinky I 
0 

factor -c, which connects factors { 2 4 - ' }  and {lr-'} to form {2q1r}.  
Using (5.8)-(5.10) in (5.11) gives an explicit expression for all the coefficients in 

the S-function series (5 .6) .  In practice it is easier to use recurrence relations to determine 
both Q, and R,. These can be obtained through the use of multinomial identities or, 
better still, through a consideration of the structure of regular slinky diagrams. For 
example we have 

24 24-1 24-2 24-3 

0-0 

0 0  

M 

+ 1 0 
I I 

n = n + o o  
U 

U H o--i> 

(5.12) 

which immediately yields the recurrence relation 

Qq= bQq-l-acQq-2+c2Q,- ,  f o r q 3 3  withQo= 1 , Q 1 = b , Q 2 = b 2 - a c .  (5.13) 

Similarly 

R,=aR,-,-bR,-,+cR,-, f o r r z 3  w i t h R o = l ,  R , = a , R 2 = a 2 - b .  (5.14) 

For special values of a, b and c we obtain particularly simple results. Thus, for 
a = b = c = 1 we obtain the multiplicity-free expansion: 

n ( l + x , + x f + X ; )  
I 

(5.15) 
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We note that, in this case, the left-hand side factorises as I l l  (1 + x,)(  1 + x f )  = QV, and 
hence the above result gives a compact account of the terms that arise in QV,. We 
list below the terms of up to weight 8 as computed explicitly using SCHUR to form the 
product QV, : 

{0}+{1}+ { 14}+{15}+{1*}+{2} -{212} + {214} - {216} - {221} - {2212} +{24} + {3}+{31} 

+{314}+{315}+{32} -{3212} -{3221}+{32}+{321}+{322}+.  . . (5.16) 

We can immediately deduce from (5.15) and (3.7) or (3.16d) that 

n (1 - X I  + xf - X l )  
I 

p: 

= (-  1 ) P((3P244 p }  - (3~24, 14r+l} + {3P249+1 1 )  4r 

p.9.  r = 0 

- { 3 ~ 2 4 q + 1 1 4 r + 2 } + { 3 ~ 2 4 q + 2 1 4 r + l }  - {3~244+214r+2}) (5.17) 

and again by factorisation we find that the left-hand side is given by ll, (1 - x,)( 1 + x f )  = 
LV,. Up to terms of weight 8 we obtain 

{0} --{1}+{14} -{15}+{18}+{2}-{212}+{214}-{216}+{221}-{2212}+{24} -{3}+{31} 

-{314}+{315} -{32} +{3212}-{3221}+{32} -{321}+{322}+. . . . (5.18) 

The expansions of the inverse series ll, (1 + x, + xf + x?)-'  and ll, (1 -xi  + xf - x:)-' 
are then given, thanks to ( 3 . 1 5 ~ )  or (3.16b), by the conjugates of (5.17) and (5.15), 
respectively. 

Other special cases of (5.6) have been dealt with elsewhere (Yang and Wybourne 
1986) including the cases ( a = * l , b = c = O ) ,  ( b = * l , a = c = O ) ,  ( c =  * l , a = b = O )  
and ( a = * l , b = l , c = O ) ,  whilst the special cases of (5.1) with ( a l = O  for i =  
1,2, . . . , m - 1, a, = * l )  have also been discussed (Yang and Wybourne 1986, Lascoux 
and Pragacz 1988). These cases are all multiplicity free. We close with two examples 
involving multiplicities. First we consider the case of (5.6) with a = b = -1, c = 1: 

X 

Il, ( l - x , - x f + x ? ) =  gpqr(-l, -1, 1){3p2q1r} (5.19) 
p .q . r=O 

where 

gpqr(-lr -1, 1)=Pp(QqRr-Qq-lRr-l) (5.20) 

with 

Pp = 1 

0, = - 0 , - I  + Q 4 - 2 +  Qq-3 

R, = - R,-l  + R,-2 + R,-, 

Hence QZk = -Q2k+l = RZk = -Rlkt l  = k+ 1, leading to the result 

for q 3 3 

f o r r a 3  

with Qo = 1, Q = - 1, Q2 = 2 

with Ro= 1, R, = -1, R2 = 2. 

n (1 -xl-xf+x:)  
I 

X 

= c ( ( q  + r +  1){3p22q12'} - ( r +  1){3p22412r+'}-(q + 1){3p224+112'}). 
p .4 . r  = O  

(5.21) 
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Finally the case a = 1, b = -1, c = 0 gives 
X m 

n ( l + x , - x f ) =  gpqr(l,-l,0){3P291r}= c QqRr{291r} (5.22) 

whereQ,=-Q,_,withQ,= l , andR,=R, - ,+R, - ,w i thR ,=R,=  1. HenceQ,=(-l) ,  
and R, = f r+ l ,  the ( r + l ) t h  Fibonacci number. This gives 

I p,q,r = O  q, r=O 

(5.23) 

Once more (3.16) may be exploited to write down a complete family of such expansions. 
To conclude, we have shown how slinky diagrams can be used to determine the 

S-function content of generating functions that give rise to infinite series of S functions 
that may or may not be multiplicity free. We have also noted the role of substitutions 
and plethysms in the analysis of S-function series. 
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